Extended Source Effects in Substructure Lensing

نویسندگان

  • Kaiki Taro Inoue
  • Masashi Chiba
چکیده

We investigate the extended source size effects on gravitational lensing in which a lens consists of a smooth potential and small mass clumps (“substructure lensing”). We first consider a lens model that consists of a clump modeled as a singular isothermal sphere (SIS) and a primary lens modeled as an external background shear and convergence. For this simple model, we derive analytic formulae for (de)magnification of circularly symmetric top-hat sources with three types of parity for their lensed images, namely, positive, negative, and doubly negative parities. Provided that the source size is sufficiently larger than the Einstein radius of the SIS, we find that in the positive (doubly negative) parity case, an extended source is always magnified (demagnified) in comparison with the unperturbed macrolens system, whereas in the negative parity case, the (de)magnification effect, which depends on the sign of convergence minus unity is weaker than those in other parities. It is shown that a measurement of the distortion pattern in a multiply lensed image enables us to break the degeneracy between the lensing effects of clump mass and those of clump distance if lensing parameters of the relevant macrolens model are determined from the position and flux of multiple images. We also show that an actual density profile of a clump can be directly measured by analyzing the “fine structure” in a multiply lensed image within the Einstein radius of the clump. Subject headings: cosmology: theory – dark matter – gravitational lensing – large-scale structure of universe

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Lensing by Subhalos in the Dwarf-galaxy Mass Range Ii: Detection Probabilities

The dark halo substructures predicted by current cold dark matter simulations may in principle be detectable through strong-lensing image splitting of quasars on small angular scales (0.01 arcseconds or below). Here, we estimate the overall probabilities for lensing by substructures in a host halo closely aligned to the line of sight to a background quasar. Under the assumption that the quasar ...

متن کامل

Lensing Optical Depth for Substructure and Isolated Dark Matter Halos

Multiple-image quasar lenses can be used to constrain the substructure mass fraction in galaxy-sized dark matter halos via anomalous flux ratios of lensed images. The flux ratios, however, can be affected by both the substructure in the lens halo and by isolated small-mass halos along the entire line-ofsight to the lensed source. While lensing by dark matter clumps near the lens galaxy is more ...

متن کامل

Finite Source Effects in Strong Lensing: Implications for the Substructure Mass Scale

Flux ratio ‘anomalies’ in quadruply-imaged gravitational lenses can be explained with galactic substructure of the sort predicted by ΛCDM, but the strength and uniqueness of that hypothesis needs to be further assessed. A good way to do that is to use the physical scale associated with the size of the source quasar, and its dependence on wavelength. We develop a toy model to study finite source...

متن کامل

Lensing Optical Depths for Substructure and Isolated Dark Matter Halos

Multiply-imaged quasar lenses can be used to constrain the substructure mass fraction in galaxysized dark matter halos via anomalous flux ratios in lensed images. The flux ratios, however, can be affected by both the substructure in the lens halo and by isolated small-mass halos along the entire line-of-sight to the lensed source. While lensing by dark matter clumps near the lens galaxy is more...

متن کامل

Gravitational lensing with stochastic substructure: Effects of the clump mass function and spatial distribution

Mass clumps in gravitational lens galaxies can perturb lensed images in characteristic ways. Strong lens flux ratios have been used to constrain the amount of dark matter substructure in lens galaxies, and various other observables have been considered as additional probes of substructure. We study the general theory of lensing with stochastic substructure in order to understand how lensing obs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005